This function finds the nearest lat/long pairs to another lat/long pair.
So in the york building and york crime context, writing
nearest(york_crime,york)
reads as "find the nearest crime in york to
each building in york, and returns a dataframe with every building in york,
the nearest york_crime to each building, and the distance in metres between
the two. Likewise, you could write nearest(york, york_crime)
, and this
would return the nearest building to every crime. nearest
assumes that
the names of the latitude and longitude are "lat" and "long", but you can
provide these names.
Usage
nearest(
nearest_df,
to_df,
nearest_lat = "lat",
nearest_long = "long",
to_lat = "lat",
to_long = "long"
)
Value
dataframe of "to_df" along with the nearest "nearest_df" to each row, along with the distance between the two, and the nearest_id, the row position of the nearest_df closest to that row.
Examples
nearest(nearest_df = york_crime,
to_df = york)
#> # A tibble: 2,944 × 22
#> to_id nearest_id distance long_to lat_to object_id desig_id pref_ref name
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <chr> <int> <chr>
#> 1 1 33 36.0 -1.09 54.0 6144 DYO1195 463280 GUILDHA…
#> 2 2 183 4.30 -1.09 54.0 6143 DYO1746 NA Bootham…
#> 3 3 183 35.8 -1.09 54.0 6142 DYO1373 462942 BOOTHAM…
#> 4 4 183 89.1 -1.08 54.0 6141 DYO1745 NA Bootham…
#> 5 5 942 236. -1.10 53.9 6140 DYO14 325952 CHURCH …
#> 6 6 942 236. -1.10 53.9 6139 DYO14 325952 CHURCH …
#> 7 7 245 60.6 -1.08 54.0 6138 DYO1226 463228 NUMBER …
#> 8 8 264 60.9 -1.08 54.0 6137 DYO1226 463228 NUMBER …
#> 9 9 1106 91.8 -1.08 54.0 6136 DYO421 464726 TERRY M…
#> 10 10 184 23.9 -1.08 54.0 6135 DYO978 463684 NA
#> # ℹ 2,934 more rows
#> # ℹ 13 more variables: grade <chr>, category <chr>, persistent_id <chr>,
#> # date <chr>, lat_nearest <dbl>, long_nearest <dbl>, street_id <chr>,
#> # street_name <chr>, context <chr>, id <chr>, location_type <chr>,
#> # location_subtype <chr>, outcome_status <chr>
# you can use the pipe as well
york_crime |> nearest(york)
#> # A tibble: 2,944 × 22
#> to_id nearest_id distance long_to lat_to object_id desig_id pref_ref name
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <chr> <int> <chr>
#> 1 1 33 36.0 -1.09 54.0 6144 DYO1195 463280 GUILDHA…
#> 2 2 183 4.30 -1.09 54.0 6143 DYO1746 NA Bootham…
#> 3 3 183 35.8 -1.09 54.0 6142 DYO1373 462942 BOOTHAM…
#> 4 4 183 89.1 -1.08 54.0 6141 DYO1745 NA Bootham…
#> 5 5 942 236. -1.10 53.9 6140 DYO14 325952 CHURCH …
#> 6 6 942 236. -1.10 53.9 6139 DYO14 325952 CHURCH …
#> 7 7 245 60.6 -1.08 54.0 6138 DYO1226 463228 NUMBER …
#> 8 8 264 60.9 -1.08 54.0 6137 DYO1226 463228 NUMBER …
#> 9 9 1106 91.8 -1.08 54.0 6136 DYO421 464726 TERRY M…
#> 10 10 184 23.9 -1.08 54.0 6135 DYO978 463684 NA
#> # ℹ 2,934 more rows
#> # ℹ 13 more variables: grade <chr>, category <chr>, persistent_id <chr>,
#> # date <chr>, lat_nearest <dbl>, long_nearest <dbl>, street_id <chr>,
#> # street_name <chr>, context <chr>, id <chr>, location_type <chr>,
#> # location_subtype <chr>, outcome_status <chr>